Xi'an Jiaotong University
Abstract:Graph anomaly detection (GAD) is crucial in applications like fraud detection and cybersecurity. Despite recent advancements using graph neural networks (GNNs), two major challenges persist. At the model level, most methods adopt a transductive learning paradigm, which assumes static graph structures, making them unsuitable for dynamic, evolving networks. At the data level, the extreme class imbalance, where anomalous nodes are rare, leads to biased models that fail to generalize to unseen anomalies. These challenges are interdependent: static transductive frameworks limit effective data augmentation, while imbalance exacerbates model distortion in inductive learning settings. To address these challenges, we propose a novel data-centric framework that integrates dynamic graph modeling with balanced anomaly synthesis. Our framework features: (1) a discrete ego-graph diffusion model, which captures the local topology of anomalies to generate ego-graphs aligned with anomalous structural distribution, and (2) a curriculum anomaly augmentation mechanism, which dynamically adjusts synthetic data generation during training, focusing on underrepresented anomaly patterns to improve detection and generalization. Experiments on five datasets demonstrate that the effectiveness of our framework.
Abstract:Static sparse training is a promising route to efficient learning by committing to a fixed mask pattern, yet the constrained structure reduces robustness. Early pruning decisions can lock the network into a brittle structure that is difficult to escape, especially in deep reinforcement learning (RL) where the evolving policy continually shifts the training distribution. We propose Topology-Aware Revival (TAR), a lightweight one-shot post-pruning procedure that improves static sparsity without dynamic rewiring. After static pruning, TAR performs a single revival step by allocating a small reserve budget across layers according to topology needs, randomly uniformly reactivating a few previously pruned connections within each layer, and then keeping the resulting connectivity fixed for the remainder of training. Across multiple continuous-control tasks with SAC and TD3, TAR improves final return over static sparse baselines by up to +37.9% and also outperforms dynamic sparse training baselines with a median gain of +13.5%.
Abstract:Psychological counseling is a fundamentally multimodal cognitive process in which clinicians integrate verbal content with visual and vocal cues to infer clients' mental states and respond empathically. However, most existing language-model-based counseling systems operate on text alone and rely on implicit mental state inference. We introduce DELTA, a deliberative multi-agent framework that models counseling as a structured reasoning process over multimodal signals, separating evidence grounding, mental state abstraction, and response generation. DELTA further incorporates reinforcement learning guided by a distribution-level Emotion Attunement Score to encourage emotionally attuned responses. Experiments on a multimodal counseling benchmark show that DELTA improves both counseling quality and emotion attunement across models. Ablation and qualitative analyses suggest that explicit multimodal reasoning and structured mental state representations play complementary roles in supporting empathic human-AI interaction.
Abstract:IMU-based Human Activity Recognition (HAR) has enabled a wide range of ubiquitous computing applications, yet its dominant clip classification paradigm cannot capture the rich temporal structure of real-world behaviors. This motivates a shift toward IMU Temporal Action Localization (IMU-TAL), which predicts both action categories and their start/end times in continuous streams. However, current progress is strongly bottlenecked by the need for dense, frame-level boundary annotations, which are costly and difficult to scale. To address this bottleneck, we introduce WS-IMUBench, a systematic benchmark study of weakly supervised IMU-TAL (WS-IMU-TAL) under only sequence-level labels. Rather than proposing a new localization algorithm, we evaluate how well established weakly supervised localization paradigms from audio, image, and video transfer to IMU-TAL under only sequence-level labels. We benchmark seven representative weakly supervised methods on seven public IMU datasets, resulting in over 3,540 model training runs and 7,080 inference evaluations. Guided by three research questions on transferability, effectiveness, and insights, our findings show that (i) transfer is modality-dependent, with temporal-domain methods generally more stable than image-derived proposal-based approaches; (ii) weak supervision can be competitive on favorable datasets (e.g., with longer actions and higher-dimensional sensing); and (iii) dominant failure modes arise from short actions, temporal ambiguity, and proposal quality. Finally, we outline concrete directions for advancing WS-IMU-TAL (e.g., IMU-specific proposal generation, boundary-aware objectives, and stronger temporal reasoning). Beyond individual results, WS-IMUBench establishes a reproducible benchmarking template, datasets, protocols, and analyses, to accelerate community-wide progress toward scalable WS-IMU-TAL.
Abstract:Deep time series models are vulnerable to noisy data ubiquitous in real-world applications. Existing robustness strategies either prune data or rely on costly prior quantification, failing to balance effectiveness and efficiency. In this paper, we introduce DropoutTS, a model-agnostic plugin that shifts the paradigm from "what" to learn to "how much" to learn. DropoutTS employs a Sample-Adaptive Dropout mechanism: leveraging spectral sparsity to efficiently quantify instance-level noise via reconstruction residuals, it dynamically calibrates model learning capacity by mapping noise to adaptive dropout rates - selectively suppressing spurious fluctuations while preserving fine-grained fidelity. Extensive experiments across diverse noise regimes and open benchmarks show DropoutTS consistently boosts superior backbones' performance, delivering advanced robustness with negligible parameter overhead and no architectural modifications. Our code is available at https://github.com/CityMind-Lab/DropoutTS.
Abstract:Class-Incremental Learning (CIL) requires models to continuously acquire new classes without forgetting previously learned ones. A dominant paradigm involves freezing a pre-trained model and training lightweight, task-specific adapters. However, maintaining task-specific parameters hinders knowledge transfer and incurs high retrieval costs, while naive parameter fusion often leads to destructive interference and catastrophic forgetting. To address these challenges, we propose Dynamical Adapter Fusion (DAF) to construct a single robust global adapter. Grounded in the PAC-Bayes theorem, we derive a fusion mechanism that explicitly integrates three components: the optimized task-specific adapter parameters, the previous global adapter parameters, and the initialization parameters. We utilize the Taylor expansion of the loss function to derive the optimal fusion coefficients, dynamically achieving the best balance between stability and plasticity. Furthermore, we propose a Robust Initialization strategy to effectively capture global knowledge patterns. Experiments on multiple CIL benchmarks demonstrate that DAF achieves state-of-the-art (SOTA) performance.
Abstract:Class-Incremental Learning (CIL) requires a model to continually learn new classes without forgetting old ones. A common and efficient solution freezes a pre-trained model and employs lightweight adapters, whose parameters are often forced to be orthogonal to prevent inter-task interference. However, we argue that this parameter-constraining method is detrimental to plasticity. To this end, we propose Semantic-Guided Dynamic Sparsification (SGDS), a novel method that proactively guides the activation space by governing the orientation and rank of its subspaces through targeted sparsification. Specifically, SGDS promotes knowledge transfer by encouraging similar classes to share a compact activation subspace, while simultaneously preventing interference by assigning non-overlapping activation subspaces to dissimilar classes. By sculpting class-specific sparse subspaces in the activation space, SGDS effectively mitigates interference without imposing rigid constraints on the parameter space. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of SGDS.
Abstract:Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective cross-modal integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
Abstract:Multimodal learning aims to integrate complementary information from heterogeneous modalities, yet strong optimization alone does not guaranty well-structured representations. Even under carefully balanced training schemes, multimodal models often exhibit geometric pathologies, including intra-modal representation collapse and sample-level cross-modal inconsistency, which degrade both unimodal robustness and multimodal fusion. We identify representation geometry as a missing control axis in multimodal learning and propose \regName, a lightweight geometry-aware regularization framework. \regName enforces two complementary constraints on intermediate embeddings: an intra-modal dispersive regularization that promotes representation diversity, and an inter-modal anchoring regularization that bounds sample-level cross-modal drift without rigid alignment. The proposed regularizer is plug-and-play, requires no architectural modifications, and is compatible with various training paradigms. Extensive experiments across multiple multimodal benchmarks demonstrate consistent improvements in both multimodal and unimodal performance, showing that explicitly regulating representation geometry effectively mitigates modality trade-offs.
Abstract:Missing data in single-cell sequencing datasets poses significant challenges for extracting meaningful biological insights. However, existing imputation approaches, which often assume uniformity and data completeness, struggle to address cases with large patches of missing data. In this paper, we present CROT, an optimal transport-based imputation algorithm designed to handle patch-based missing data in tabular formats. Our approach effectively captures the underlying data structure in the presence of significant missingness. Notably, it achieves superior imputation accuracy while significantly reducing runtime, demonstrating its scalability and efficiency for large-scale datasets. This work introduces a robust solution for imputation in heterogeneous, high-dimensional datasets with structured data absence, addressing critical challenges in both biological and clinical data analysis. Our code is available at Anomalous Github.